
Copyright © 2014 Pearson Education, Inc.

Chapter 2

Data and Expressions

Java Software Solutions

Foundations of Program Design

John Lewis

William Loftus

Outline

Character Strings

Variables and Assignment

Primitive Data Types

Expressions

Data Conversion

Interactive Programs

Copyright © 2014 Pearson Education, Inc.



Character Strings

• A string literal is represented by putting double 
quotes around the text

• Examples:

"This is a string literal."

"123 Main Street"

"X"

• Every character string is an object in Java, defined 
by the String class

• Every string literal represents a String object

Copyright © 2014 Pearson Education, Inc.

The println Method

• In the Lincoln program from Chapter 1, we 
invoked the println method to print a character 
string

• The System.out object represents a destination 
(the monitor screen) to which we can send output

System.out.println ("Whatever you are, be a good one.");

objectobjectobjectobject methodmethodmethodmethod

namenamenamename
information provided to the methodinformation provided to the methodinformation provided to the methodinformation provided to the method

(parameters)(parameters)(parameters)(parameters)

Copyright © 2014 Pearson Education, Inc.



The print Method

• The System.out object provides another service 
as well

• The print method is similar to the println
method, except that it does not advance to the 
next line

• Therefore anything printed after a print
statement will appear on the same line

• See Countdown.java 

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  Countdown.java       Author: Lewis/Loftus

//

//  Demonstrates the difference between print and println.

//********************************************************************

public class Countdown

{

//-----------------------------------------------------------------

//  Prints two lines of output representing a rocket countdown.

//-----------------------------------------------------------------

public static void main(String[] args)

{

System.out.print("Three... ");

System.out.print("Two... ");

System.out.print("One... ");

System.out.print("Zero... ");

System.out.println("Liftoff!");  // appears on first output line

System.out.println("Houston, we have a problem.");

}

}



Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  Countdown.java       Author: Lewis/Loftus

//

//  Demonstrates the difference between print and println.

//********************************************************************

public class Countdown

{

//-----------------------------------------------------------------

//  Prints two lines of output representing a rocket countdown.

//-----------------------------------------------------------------

public static void main(String[] args)

{

System.out.print("Three... ");

System.out.print("Two... ");

System.out.print("One... ");

System.out.print("Zero... ");

System.out.println("Liftoff!");  // appears on first output line

System.out.println("Houston, we have a problem.");

}

}

Output

Three... Two... One... Zero... Liftoff!

Houston, we have a problem.

String Concatenation

• The string concatenation operator (+) is used to 

append one string to the end of another

"Peanut butter " + "and jelly"

• It can also be used to append a number to a string

• A string literal cannot be broken across two lines 

in a program

• See Facts.java 

Copyright © 2014 Pearson Education, Inc.



Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  Facts.java       Author: Lewis/Loftus

//

//  Demonstrates the use of the string concatenation operator and the

//  automatic conversion of an integer to a string.

//********************************************************************

public class Facts

{

//-----------------------------------------------------------------

//  Prints various facts.

//-----------------------------------------------------------------

public static void main(String[] args)

{

// Strings can be concatenated into one long string

System.out.println("We present the following facts for your "

+ "extracurricular edification:");

System.out.println();

// A string can contain numeric digits

System.out.println("Letters in the Hawaiian alphabet: 12");

continue

Copyright © 2014 Pearson Education, Inc.

continue

// A numeric value can be concatenated to a string

System.out.println("Dialing code for Antarctica: " + 672);

System.out.println("Year in which Leonardo da Vinci invented "

+ "the parachute: " + 1515);

System.out.println("Speed of ketchup: " + 40 + " km per year");

}

}



Copyright © 2014 Pearson Education, Inc.

continue

// A numeric value can be concatenated to a string

System.out.println ("Dialing code for Antarctica: " + 672);

System.out.println ("Year in which Leonardo da Vinci invented "

+ "the parachute: " + 1515);

System.out.println("Speed of ketchup: " + 40 + " km per year");

}

}

Output

We present the following facts for your extracurricular edification:

Letters in the Hawaiian alphabet: 12

Dialing code for Antarctica: 672

Year in which Leonardo da Vinci invented the parachute: 1515

Speed of ketchup: 40 km per year

String Concatenation

• The + operator is also used for arithmetic addition

• The function that it performs depends on the type of the 

information on which it operates

• If both operands are strings, or if one is a string and one is 

a number, it performs string concatenation

• If both operands are numeric, it adds them

• The + operator is evaluated left to right, but parentheses 

can be used to force the order

• See Addition.java 

Copyright © 2014 Pearson Education, Inc.



Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  Addition.java       Author: Lewis/Loftus

//

//  Demonstrates the difference between the addition and string

//  concatenation operators.

//********************************************************************

public class Addition

{

//-----------------------------------------------------------------

//  Concatenates and adds two numbers and prints the results.

//-----------------------------------------------------------------

public static void main(String[] args)

{

System.out.println("24 and 45 concatenated: " + 24 + 45);

System.out.println("24 and 45 added: " + (24 + 45));

}

}

Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  Addition.java       Author: Lewis/Loftus

//

//  Demonstrates the difference between the addition and string

//  concatenation operators.

//********************************************************************

public class Addition

{

//-----------------------------------------------------------------

//  Concatenates and adds two numbers and prints the results.

//-----------------------------------------------------------------

public static void main(String[] args)

{

System.out.println("24 and 45 concatenated: " + 24 + 45);

System.out.println("24 and 45 added: " + (24 + 45));

}

}

Output

24 and 45 concatenated: 2445

24 and 45 added: 69



Quick Check

Copyright © 2014 Pearson Education, Inc.

What output is produced by the following?

System.out.println("X: " + 25);

System.out.println("Y: " + (15 + 50));

System.out.println("Z: " + 300 + 50);

Quick Check

Copyright © 2014 Pearson Education, Inc.

What output is produced by the following?

System.out.println("X: " + 25);

System.out.println("Y: " + (15 + 50));

System.out.println("Z: " + 300 + 50);

X: 25

Y: 65

Z: 30050



Escape Sequences

• What if we wanted to print the quote character?

• The following line would confuse the compiler because it 
would interpret the second quote as the end of the string

System.out.println("I said "Hello" to you.");

• An escape sequence is a series of characters that 
represents a special character

• An escape sequence begins with a backslash character (\)

System.out.println("I said \"Hello\" to you.");

Copyright © 2014 Pearson Education, Inc.

Escape Sequences

• Some Java escape sequences:

Escape SequenceEscape SequenceEscape SequenceEscape Sequence

\b

\t

\n

\r

\"

\'

\\

MeaningMeaningMeaningMeaning

backspacebackspacebackspacebackspace

tabtabtabtab

newlinenewlinenewlinenewline

carriage returncarriage returncarriage returncarriage return

double quotedouble quotedouble quotedouble quote

single quotesingle quotesingle quotesingle quote

backslashbackslashbackslashbackslash

Copyright © 2014 Pearson Education, Inc.

• See Roses.java



Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  Roses.java       Author: Lewis/Loftus

//

//  Demonstrates the use of escape sequences.

//********************************************************************

public class Roses

{

//-----------------------------------------------------------------

//  Prints a poem (of sorts) on multiple lines.

//-----------------------------------------------------------------

public static void main(String[] args)

{

System.out.println("Roses are red,\n\tViolets are blue,\n" +

"Sugar is sweet,\n\tBut I have \"commitment issues\",\n\t" +

"So I'd rather just be friends\n\tAt this point in our " +

"relationship.");

}

}

Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  Roses.java       Author: Lewis/Loftus

//

//  Demonstrates the use of escape sequences.

//********************************************************************

public class Roses

{

//-----------------------------------------------------------------

//  Prints a poem (of sorts) on multiple lines.

//-----------------------------------------------------------------

public static void main (String[] args)

{

System.out.println ("Roses are red,\n\tViolets are blue,\n" +

"Sugar is sweet,\n\tBut I have \"commitment issues\",\n\t" +

"So I'd rather just be friends\n\tAt this point in our " +

"relationship.");

}

}

Output

Roses are red,

Violets are blue,

Sugar is sweet,

But I have "commitment issues",

So I'd rather just be friends

At this point in our relationship.



Quick Check

Copyright © 2014 Pearson Education, Inc.

Write a single println statement that produces the 

following output:

"Thank you all for coming to my home

tonight," he said mysteriously.

Quick Check

Copyright © 2014 Pearson Education, Inc.

Write a single println statement that produces the 

following output:

"Thank you all for coming to my home

tonight," he said mysteriously.

System.out.println("\"Thank you all for " +

"coming to my home\ntonight,\" he said " +

"mysteriously.");



Outline

Character Strings

Variables and Assignment

Primitive Data Types

Expressions

Data Conversion

Interactive Programs

Graphics

Applets

Drawing Shapes

Copyright © 2014 Pearson Education, Inc.

Variables

• A variable is a name for a location in memory that 
holds a value

• A variable declaration specifies the variable's name 
and the type of information that it will hold

int total;

int count, temp, result;

Multiple variables can be created in one declarationMultiple variables can be created in one declarationMultiple variables can be created in one declarationMultiple variables can be created in one declaration

data typedata typedata typedata type variable namevariable namevariable namevariable name

Copyright © 2014 Pearson Education, Inc.



Variable Initialization

• A variable can be given an initial value in the 
declaration

int sum = 0;

int base = 32, max = 149;

Copyright © 2014 Pearson Education, Inc.

• When a variable is referenced in a program, its 
current value is used

• See PianoKeys.java

Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  PianoKeys.java       Author: Lewis/Loftus

//

//  Demonstrates the declaration, initialization, and use of an

//  integer variable.

//********************************************************************

public class PianoKeys

{

//-----------------------------------------------------------------

//  Prints the number of keys on a piano.

//-----------------------------------------------------------------

public static void main(String[] args)

{

int keys = 88;

System.out.println("A piano has " + keys + " keys.");

}

}



Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  PianoKeys.java       Author: Lewis/Loftus

//

//  Demonstrates the declaration, initialization, and use of an

//  integer variable.

//********************************************************************

public class PianoKeys

{

//-----------------------------------------------------------------

//  Prints the number of keys on a piano.

//-----------------------------------------------------------------

public static void main(String[] args)

{

int keys = 88;

System.out.println("A piano has " + keys + " keys.");

}

}

Output

A piano has 88 keys.

Assignment

• An assignment statement changes the value of a 
variable

• The assignment operator is the = sign

total = 55;

Copyright © 2014 Pearson Education, Inc.

• The value that was in total is overwritten

• You can only assign a value to a variable that is 
consistent with the variable's declared type

• See Geometry.java



Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  Geometry.java       Author: Lewis/Loftus

//

//  Demonstrates the use of an assignment statement to change the

//  value stored in a variable.

//********************************************************************

public class Geometry

{

//-----------------------------------------------------------------

//  Prints the number of sides of several geometric shapes.

//-----------------------------------------------------------------

public static void main(String[] args)

{

int sides = 7;  // declaration with initialization

System.out.println("A heptagon has " + sides + " sides.");

sides = 10;  // assignment statement

System.out.println("A decagon has " + sides + " sides.");

sides = 12;

System.out.println("A dodecagon has " + sides + " sides.");

}

}

Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  Geometry.java       Author: Lewis/Loftus

//

//  Demonstrates the use of an assignment statement to change the

//  value stored in a variable.

//********************************************************************

public class Geometry

{

//-----------------------------------------------------------------

//  Prints the number of sides of several geometric shapes.

//-----------------------------------------------------------------

public static void main (String[] args)

{

int sides = 7;  // declaration with initialization

System.out.println ("A heptagon has " + sides + " sides.");

sides = 10;  // assignment statement

System.out.println ("A decagon has " + sides + " sides.");

sides = 12;

System.out.println ("A dodecagon has " + sides + " sides.");

}

}

Output

A heptagon has 7 sides.

A decagon has 10 sides.

a dodecagon has 12 sides.



Constants

• A constant is an identifier that is similar to a 
variable except that it holds the same value during 
its entire existence

• As the name implies, it is constant, not variable

• The compiler will issue an error if you try to change 
the value of a constant

• In Java, we use the final modifier to declare a 
constant

final int MIN_HEIGHT = 69;

Copyright © 2014 Pearson Education, Inc.

Constants

• Constants are useful for three important reasons

• First, they give meaning to otherwise unclear literal 

values

– Example: MAX_LOAD means more than the literal 250

• Second, they facilitate program maintenance

– If a constant is used in multiple places, its value need 

only be set in one place

• Third, they formally establish that a value should 

not change, avoiding inadvertent errors by other 

programmers

Copyright © 2014 Pearson Education, Inc.



Outline

Character Strings

Variables and Assignment

Primitive Data Types

Expressions

Data Conversion

Interactive Programs

Copyright © 2014 Pearson Education, Inc.

Primitive Data
• There are eight primitive data types in Java

• Four of them represent integers:
– byte, short, int, long

• Two of them represent floating point numbers:
– float, double

• One of them represents characters:
– char

• And one of them represents boolean values:
– boolean

Copyright © 2014 Pearson Education, Inc.



Numeric Primitive Data

• The difference between the numeric primitive types 

is their size and the values they can store:

TypeTypeTypeType

byte

short

int

long

float

double

StorageStorageStorageStorage

8 bits8 bits8 bits8 bits

16 bits16 bits16 bits16 bits

32 bits32 bits32 bits32 bits

64 bits64 bits64 bits64 bits

32 bits32 bits32 bits32 bits

64 bits64 bits64 bits64 bits

Min ValueMin ValueMin ValueMin Value

----128128128128

----32,76832,76832,76832,768

----2,147,483,6482,147,483,6482,147,483,6482,147,483,648

< < < < ----9 x 109 x 109 x 109 x 1018181818

+/+/+/+/---- 3.4 x 103.4 x 103.4 x 103.4 x 1038383838 with 7 significant digitswith 7 significant digitswith 7 significant digitswith 7 significant digits

+/+/+/+/---- 1.7 x 101.7 x 101.7 x 101.7 x 10308308308308 with 15 significant digitswith 15 significant digitswith 15 significant digitswith 15 significant digits

Max ValueMax ValueMax ValueMax Value

127127127127

32,76732,76732,76732,767

2,147,483,6472,147,483,6472,147,483,6472,147,483,647

> 9 x 10> 9 x 10> 9 x 10> 9 x 1018181818

Copyright © 2014 Pearson Education, Inc.

Characters
• A char variable stores a single character

• Character literals are delimited by single quotes:

'a'   'X'    '7'    '$'    ','    '\n'

• Example declarations:

char topGrade = 'A';

char terminator = ';', separator = ' ';

• Note the difference between a primitive character 
variable, which holds only one character, and a 
String object, which can hold multiple characters

Copyright © 2014 Pearson Education, Inc.



Character Sets

• A character set is an ordered list of characters, 
with each character corresponding to a unique 
number

• A char variable in Java can store any character 
from the Unicode character set

• The Unicode character set uses sixteen bits per 
character, allowing for 65,536 unique characters

• It is an international character set, containing 
symbols and characters from many world 
languages

Copyright © 2014 Pearson Education, Inc.

Characters

• The ASCII character set is older and smaller than 

Unicode, but is still quite popular

• The ASCII characters are a subset of the Unicode 

character set, including:

uppercase lettersuppercase lettersuppercase lettersuppercase letters

lowercase letterslowercase letterslowercase letterslowercase letters

punctuationpunctuationpunctuationpunctuation

digitsdigitsdigitsdigits

special symbolsspecial symbolsspecial symbolsspecial symbols

control characterscontrol characterscontrol characterscontrol characters

A, B, C, …A, B, C, …A, B, C, …A, B, C, …

a, b, c, …a, b, c, …a, b, c, …a, b, c, …

period, semiperiod, semiperiod, semiperiod, semi----colon, …colon, …colon, …colon, …

0, 1, 2, …0, 1, 2, …0, 1, 2, …0, 1, 2, …

&, |, &, |, &, |, &, |, \\\\, …, …, …, …

carriage return, tab, ...carriage return, tab, ...carriage return, tab, ...carriage return, tab, ...

Copyright © 2014 Pearson Education, Inc.



Boolean

• A boolean value represents a true or false 
condition

• The reserved words true and false are the 
only valid values for a boolean type

boolean done = false;

• A boolean variable can also be used to represent 
any two states, such as a light bulb being on or off

Copyright © 2014 Pearson Education, Inc.

Outline

Character Strings

Variables and Assignment

Primitive Data Types

Expressions

Data Conversion

Interactive Programs

Copyright © 2014 Pearson Education, Inc.



Expressions

• An expression is a combination of one or more 
operators and operands

• Arithmetic expressions compute numeric results 
and make use of the arithmetic operators:

AdditionAdditionAdditionAddition

SubtractionSubtractionSubtractionSubtraction

MultiplicationMultiplicationMultiplicationMultiplication

DivisionDivisionDivisionDivision

RemainderRemainderRemainderRemainder

++++

----

****

////

%%%%

Copyright © 2014 Pearson Education, Inc.

• If either or both operands are floating point values, 
then the result is a floating point value

Division and Remainder

• If both operands to the division operator (/) are 
integers, the result is an integer (the fractional part 
is discarded)

14 / 3 equals     equals     equals     equals     4444

8 / 12 equals     equals     equals     equals     0000

Copyright © 2014 Pearson Education, Inc.

• The remainder operator (%) returns the remainder 
after dividing the first operand by the second

14 % 3 equals     equals     equals     equals     2222

8 % 12 equals     equals     equals     equals     8888



Quick Check

Copyright © 2014 Pearson Education, Inc.

What are the results of the following expressions?

12 / 2

12.0 / 2.0

10 / 4

10 / 4.0

4 / 10

4.0 / 10

12 % 3

10 % 3

3 % 10

Quick Check

Copyright © 2014 Pearson Education, Inc.

What are the results of the following expressions?

12 / 2

12.0 / 2.0

10 / 4

10 / 4.0

4 / 10

4.0 / 10

12 % 3

10 % 3

3 % 10

=  6

=  6.0

=  2

=  2.5

=  0

=  0.4

=  0

=  1

=  0



Operator Precedence

• Operators can be combined into larger expressions

result  =  total + count / max - offset;

• Operators have a well-defined precedence which 
determines the order in which they are evaluated

• Multiplication, division, and remainder are evaluated 
before addition, subtraction, and string 
concatenation

• Arithmetic operators with the same precedence are 
evaluated from left to right, but parentheses can be 
used to force the evaluation order

Copyright © 2014 Pearson Education, Inc.

Quick Check

a + b + c + d + e a + b * c - d / e

a / (b + c) - d % e

a / (b * (c + (d - e)))

Copyright © 2014 Pearson Education, Inc.

In what order are the operators evaluated in the 

following expressions?



Quick Check

a + b + c + d + e a + b * c - d / e

a / (b + c) - d % e

a / (b * (c + (d - e)))

1 432 3 241

2 341

4 123

Copyright © 2014 Pearson Education, Inc.

In what order are the operators evaluated in the 

following expressions?

Expression Trees

• The evaluation of a particular expression can be 

shown using an expression tree

• The operators lower in the tree have higher 

precedence for that expression

a + (b – c) / d

a

+

/

- d

b c

Copyright © 2014 Pearson Education, Inc.



Assignment Revisited

• The assignment operator has a lower precedence 

than the arithmetic operators

First the expression on the right handFirst the expression on the right handFirst the expression on the right handFirst the expression on the right hand

side of the = operator is evaluatedside of the = operator is evaluatedside of the = operator is evaluatedside of the = operator is evaluated

Then the result is stored in theThen the result is stored in theThen the result is stored in theThen the result is stored in the

variable on the left hand sidevariable on the left hand sidevariable on the left hand sidevariable on the left hand side

answer  =  sum / 4 + MAX * lowest;

14 3 2

Copyright © 2014 Pearson Education, Inc.

Assignment Revisited

• The right and left hand sides of an assignment 

statement can contain the same variable

First, one is added to theFirst, one is added to theFirst, one is added to theFirst, one is added to the
original value of original value of original value of original value of count

Then the result is stored back into Then the result is stored back into Then the result is stored back into Then the result is stored back into count

(overwriting the original value)(overwriting the original value)(overwriting the original value)(overwriting the original value)

count  =  count + 1;

Copyright © 2014 Pearson Education, Inc.



Increment and Decrement

• The increment (++) and decrement (--) operators 
use only one operand

• The statement

count++;

is functionally equivalent to

count = count + 1;

Copyright © 2014 Pearson Education, Inc.

Increment and Decrement
• The increment and decrement operators can be 

applied in postfix form:

count++

• or prefix form:

++count

• When used as part of a larger expression, the two 
forms can have different effects

• Because of their subtleties, the increment and 
decrement operators should be used with care

Copyright © 2014 Pearson Education, Inc.



Assignment Operators

• Often we perform an operation on a variable, and 
then store the result back into that variable

• Java provides assignment operators to simplify 
that process

• For example, the statement

num += count;

is equivalent to

num = num + count;

Copyright © 2014 Pearson Education, Inc.

Assignment Operators

• There are many assignment operators in Java, 

including the following:

OperatorOperatorOperatorOperator

+=

-=

*=

/=

%=

ExampleExampleExampleExample

x += y

x -= y

x *= y

x /= y

x %= y

Equivalent ToEquivalent ToEquivalent ToEquivalent To

x = x + y

x = x - y

x = x * y

x = x / y

x = x % y

Copyright © 2014 Pearson Education, Inc.



Assignment Operators

• The right hand side of an assignment operator can 
be a complex expression

• The entire right-hand expression is evaluated first, 
then the result is combined with the original variable

• Therefore

result /= (total-MIN) % num;

is equivalent to

result = result / ((total-MIN) % num);

Copyright © 2014 Pearson Education, Inc.

Assignment Operators

• The behavior of some assignment operators 

depends on the types of the operands

• If the operands to the += operator are strings, the 

assignment operator performs string concatenation

• The behavior of an assignment operator (+=) is 

always consistent with the behavior of the 
corresponding operator (+)

Copyright © 2014 Pearson Education, Inc.



Outline

Character Strings

Variables and Assignment

Primitive Data Types

Expressions

Data Conversion

Interactive Programs

Copyright © 2014 Pearson Education, Inc.

Data Conversion

• Sometimes it is convenient to convert data from 

one type to another

• For example, in a particular situation we may want 

to treat an integer as a floating point value

• These conversions do not change the type of a 

variable or the value that's stored in it – they only 

convert a value as part of a computation

Copyright © 2014 Pearson Education, Inc.



Data Conversion

• Widening conversions are safest because they tend 
to go from a small data type to a larger one (such 
as a short to an int)

• Narrowing conversions can lose information 
because they tend to go from a large data type to a 
smaller one (such as an int to a short)

• In Java, data conversions can occur in three ways:

– assignment conversion

– promotion

– casting

Copyright © 2014 Pearson Education, Inc.

Data Conversion

Copyright © 2014 Pearson Education, Inc.

Widening Conversions Narrowing Conversions



Assignment Conversion
• Assignment conversion occurs when a value of one 

type is assigned to a variable of another

• Example:

int dollars = 20;

double money = dollars;

• Only widening conversions can happen via 
assignment

• Note that the value or type of dollars did not 
change

Copyright © 2014 Pearson Education, Inc.

Promotion

• Promotion happens automatically when operators 
in expressions convert their operands

• Example:

int count = 12;

double sum = 490.27;

result = sum / count;

• The value of count is converted to a floating 
point value to perform the division calculation

Copyright © 2014 Pearson Education, Inc.



Casting
• Casting is the most powerful, and dangerous, 

technique for conversion

• Both widening and narrowing conversions can be 
accomplished by explicitly casting a value

• To cast, the type is put in parentheses in front of 
the value being converted

int total = 50;

float result = (float) total / 6;

• Without the cast, the fractional part of the answer 
would be lost

Copyright © 2014 Pearson Education, Inc.

Outline

Character Strings

Variables and Assignment

Primitive Data Types

Expressions

Data Conversion

Interactive Programs

Copyright © 2014 Pearson Education, Inc.



Interactive Programs

• Programs generally need input on which to 
operate

• The Scanner class provides convenient methods 
for reading input values of various types

• A Scanner object can be set up to read input from 
various sources, including the user typing values 
on the keyboard

• Keyboard input is represented by the System.in
object

Copyright © 2014 Pearson Education, Inc.

Reading Input

• The following line creates a Scanner object that 
reads from the keyboard:

Scanner scan = new Scanner(System.in);

• The new operator creates the Scanner object

• Once created, the Scanner object can be used to 
invoke various input methods, such as:

answer = scan.nextLine();

Copyright © 2014 Pearson Education, Inc.



Reading Input

• The Scanner class is part of the java.util class 
library, and must be imported into a program to be 
used

• The nextLine method reads all of the input until 
the end of the line is found

• See Echo.java 

• The details of object creation and class libraries are 
discussed further in Chapter 3

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  Echo.java       Author: Lewis/Loftus

//

//  Demonstrates the use of the nextLine method of the Scanner class

//  to read a string from the user.

//********************************************************************

import java.util.Scanner;

public class Echo

{

//-----------------------------------------------------------------

//  Reads a character string from the user and prints it.

//-----------------------------------------------------------------

public static void main(String[] args)

{

String message;

Scanner scan = new Scanner(System.in);

System.out.println("Enter a line of text:");

message = scan.nextLine();

System.out.println("You entered: \"" + message + "\"");

}

}



Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  Echo.java       Author: Lewis/Loftus

//

//  Demonstrates the use of the nextLine method of the Scanner class

//  to read a string from the user.

//********************************************************************

import java.util.Scanner;

public class Echo

{

//-----------------------------------------------------------------

//  Reads a character string from the user and prints it.

//-----------------------------------------------------------------

public static void main(String[] args)

{

String message;

Scanner scan = new Scanner(System.in);

System.out.println("Enter a line of text:");

message = scan.nextLine();

System.out.println("You entered: \"" + message + "\"");

}

}

Sample Run

Enter a line of text:

You want fries with that?

You entered: "You want fries with that?"

Input Tokens
• Unless specified otherwise, white space is used to 

separate the elements (called tokens) of the input

• White space includes space characters, tabs, new 
line characters

• The next method of the Scanner class reads the 
next input token and returns it as a string

• Methods such as nextInt and nextDouble
read data of particular types

• See GasMileage.java 

Copyright © 2014 Pearson Education, Inc.



Copyright © 2014 Pearson Education, Inc.

//********************************************************************

//  GasMileage.java       Author: Lewis/Loftus

//

//  Demonstrates the use of the Scanner class to read numeric data.

//********************************************************************

import java.util.Scanner;

public class GasMileage

{

//-----------------------------------------------------------------

//  Calculates fuel efficiency based on values entered by the

//  user.

//-----------------------------------------------------------------

public static void main(String[] args)

{

int miles;

double gallons, mpg;

Scanner scan = new Scanner(System.in);

continue

Copyright © 2014 Pearson Education, Inc.

continue

System.out.print("Enter the number of miles: ");

miles = scan.nextInt();

System.out.print("Enter the gallons of fuel used: ");

gallons = scan.nextDouble();

mpg = miles / gallons;

System.out.println("Miles Per Gallon: " + mpg);

}

}



Copyright © 2014 Pearson Education, Inc.

continue

System.out.print ("Enter the number of miles: ");

miles = scan.nextInt();

System.out.print ("Enter the gallons of fuel used: ");

gallons = scan.nextDouble();

mpg = miles / gallons;

System.out.println("Miles Per Gallon: " + mpg);

}

}

Sample Run

Enter the number of miles: 328

Enter the gallons of fuel used: 11.2

Miles Per Gallon: 29.28571428571429


